Zeichnen Und Konstruieren - Geometrische Grundkonstruktionen

Kurzinfo Kursinhalte Geometrische Grundkonstruktionen


Der Kurs geometrische Grundkonstruktionen umfasst das Basiswissen zur mathematischen Konstruktion. Sie beginnen mit einem Einführungsvideo zum kartesischen Koordinatensystem und lernen, wie es aufgebaut ist, wie die Achsen beschriftet werden und wie man Punkte und Koordinaten abliest, einträgt und darstellt. Ein wichtiges Hilfsmittel bei geometrischen Konstruktionen ist das Geodreieck. Sie lernen, wie man mit einem Geodreieck Längen misst und einzeichnet und wie Sie Winkel mit einem Geodreieck abtragen können. Zur Konstruktion von Kreisen, Seitenhalbierenden, Winkelhalbierenden, Senkrechten und Höhen benötigen zusätzlich einen Zirkel. Sie lernen, dieses Handwerkszeug so zu nutzen, um damit Figuren konstruieren zu können. Wichtig dabei sind sogenannte Hilfskreise, die um bestimmte Punkte gezogen werden und die zur Bestimmung fehlender Punkte eingesetzt werden. Zieht man beim Dreieck zwei Hilfskreise um zwei vorgegebene Punkte, kann man so den fehlenden dritten Punkt bestimmen. Geometrische Grundkonstruktionen bilden die Basis für kompliziertere mathematische Konstruktionen, zum Beispiel die Konstruktion

beliebiger geometrischer Figuren wie Dreiecke und Kreise und Körper. Bei der Konstruktion von Dreiecken können Sie zusätzlich noch Höhen, Seitenhalbierende und Winkelhalbierende konstruieren. Konstruiert man die Seitenhalbierenden eines Dreiecks, so schneiden sich diese im Schwerpunkt des Dreiecks. Die Höhe eines Dreiecks unterteilt ein Dreieck in zwei rechtwinklige Dreiecke und ist deshalb eine wichtige Größe im Dreieck. Sie wird außerdem zur Berechnung des Flächeninhalts benötigt. Senkrechten konstruieren spielt bei allen mathematischen Figuren mit rechtem Winkel eine Rolle; außerdem nutzt man eine Senkrechte, um den kürzesten Abstand zwischen zwei Punkte zu ermitteln. Winkel können mit Zirkel und Lineal ein zwei gleich große Winkel unterteilt werden. Die Gerade, die durch den Scheitelpunkt des Winkels verläuft und diesen in der Mitte teilt, heißt Winkelhalbierende. Auch deren Konstruktion gehört zum Bereich geometrische Grundkonstruktionen.

Durch die weitere Nutzung der Seite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close