Orthogonalität von Gerade und Ebene (Koordinatenform)

Bewerten
Kommentieren
 

Bewertung

5/5 Sterne
1 Bewertung
 

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

 
 

Weitere Videos im Kurs

 
 

Orthogonalität von Gerade und Ebene (Koordinatenform)

Die Orthogonalität von Gerade und Ebene (gegeben in Koordinatenform) festzustellen, lernst du in diesem Video. Da dieser Aufgabentyp in Klausuren und dem Abitur eigentlich immer im Sachzusammenhang geprüft wird, sehen wir uns hierzu eine Beispielaufgabe an:

Das Zifferblatt einer Sonnenuhr liegt in einer Ebene, die in einem kartesischen Koordinatensystem durch die Gleichung $E:3x-2y+3z=2$ beschrieben wird. Die Uhrzeit wird durch den Schatten des Polstabs angezeigt, der senkrecht aus der Ebene zeigt. Licht fällt parallel zur Gerade $g$ mit der Gleichung $g:\overrightarrow{X}=\left(\begin{array}{c}1\\ 2\\-1\end{array}\right)+ \lambda \cdot \left(\begin{array}{c}-6\\ 4\\-6\end{array}\right), \lambda \in \mathbb{R}$ ein. Erzeugt dieses Licht einen Schatten auf dem Ziffernblatt?

Lösungsansatz:
Der Polstab, dessen Schatten die Tageszeit andeutet, zeigt senkrecht aus der Scheibe der Sonnenuhr heraus. Er wirft also genau dann keinen Schatten, wenn das Sonnenlicht senkrecht auf die Platte fällt, also wenn die Orthogonalität von Gerade und Ebene gegeben ist. Es gibt unterschiedliche Methoden, die Orthogonalität von Gerade und Ebene zu prüfen, je nachdem, ob die Ebene in Parameterform oder in Koordinatenform gegeben ist. Wir haben hier die Koordiantengleichung $3x-2y+3z=3$ gegeben. Für den Fall, dass die Gleichung in Parameterform gegeben ist, wird es bald ein separates Video geben.

Erster Schritt zur Lösung der Aufgabe: Normalenvektor der Ebene ablesen
Die Koeffizienten der Variablen $x$, $y$ und $z$ aus der Koordinatengleichung von $E$ bilden einen Vektor, der senkrecht auf der Ebene steht. Der Normalenvektor der Ebene $E$ lautet also $\overrightarrow{n}=\left(\begin{array}{c}3\\ -2\\3\end{array}\right)$

Schritt 2: Parallelität von Gerade und Normalenvektor prüfen
Die Lage der gerade in Bezug auf die Ebene hängt nur vom Richtungsvektor der Geraden ab, also dem Vektor, der in der Geradengleichung mit dem Laufparameter $\lambda$ multipliziert wird: $g:\overrightarrow{X}=\left(\begin{array}{c}1\\ 2\\-1\end{array}\right)+ \lambda \cdot \left(\begin{array}{c}-6\\ 4\\-6\end{array}\right), \lambda \in \mathbb{R}$ ⇔ Richtungsvektor: $\overrightarrow{v}=\left(\begin{array}{c}-6\\ 4\\-6\end{array}\right)$.

Die Gerade verläuft genau dann senkrecht zur Ebene, wenn ihr Richtungsvektor parallel zum Normalenvektor der Ebene ist. Es gibt zwei gängige Methoden, um zwei Vektoren auf Parallelität
zu prüfen: entweder über ein einfaches lineares Gleichungssystem oder mit dem Kreuzprodukt.
Beide Rechenwege werden ausführlich im Lösungscoach dargestellt, daher hier nur die Lösungsansätze:
Bei der Lösung über ein Gleichungssystem nutzt du die Tatsache, dass zwei Vektoren genau dann parallel sind, wenn einer ein Vielfaches des anderen ist. In unserem Fall geht es um den Normalenvektor $\overrightarrow{n}$ und den Richtungsvektor $\overrightarrow{v}$. Wir prüfen jetzt, ob es ein $t \in \mathbb{R}$ gibt, für das $\overrightarrow{n}=t\cdot \overrightarrow{v}$ gilt.

Bei der Methode über das Kreuzprodukt nutzt du die Tatsache, dass zwei Vektoren genau dann parallel sind, wenn ihr Kreuzprodukt (Vektorprodukt) der Nullvektor ist. Wir berechnen als $\overrightarrow{n} \times \overrightarrow{v}$.

Beide Wege liefern das Ergebnis, dass die beiden Vektoren parallel sind, also $\overrightarrow{n} \parallel \overrightarrow{v}$ gilt, bedeutet, dass die Orthogonalität von Gerade und Ebene nachgewiesen wurde (die Gerade $g$ mit Richtungsvektor $\overrightarrow{v}$) steht senkrecht auf der Ebene $E$ mit Normalenvektor $\overrightarrow{n}$). Das wiederum bedeutet, dass das Licht, das parallel zu $g$ einfällt, senkrecht auf das Ziffernblatt fällt, das in der ebene $E$ liegt. Also wirft der Polstab keinen Schatten.

 

 
 
 
 

Jetzt einloggen


Passwort vergessen?
 

Durch die weitere Nutzung der Seite stimmen Sie der Verwendung von Cookies zu. Weitere Informationen

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close